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1 Introduction

Every instructor should know some easy examples of
anharmonic oscillations. The rocking of an empty wine
bottle or a slender beer glass is one of those: The angle
ϕ(t) is not a sinusoidal function of time and the period
is not independent of the amplitude, not even for small
amplitudes. Equivalent oscillations of LEGO-rockers
are experimentally investigated with simple equipment.

This kind of oscillation has been studied by G. W.
Housner[1] (response of slender structures to an earth-
quake) and by T. McGeer[2] (as a part of bipedal
robotic motion). The equation of motion has been
solved by G. W. Housner.[1] T. McGeer and L. H.
Palmer[2] showed that the oscillation comes to rest
after a finite time. This article summarizes the the-
ory, extends it and presents measurements of ϕ(t) with
consumer electronics. Rocking is one of the few anhar-
monic oscillations that are accessible to undergraduate
students.

Figure 1: A rocker is built with long and short
LEGOTM bricks. Additional bricks on the arms in-
crease the period. The rocker rotates around the
pivot point P. The center of mass C is at a distance
r from P. The line CP includes an angle α with the
bottom of the rocker and the bottom includes an
angle ϕ with the horizontal table.

2 Theory

A rocker is built with LEGOTM bricks, see Fig. 1. It
rotates around the pivot point P under the influence
of gravity. The axis of rotation through P is assumed
to be fixed with respect to the rocker and to the sup-
porting table, i.e. we assume a no-slip condition and
planar motion. The rocker has mass m and moment
of inertia J with respect to P. The center of mass C

is at a distance r from P. The rocker is left-right sym-
metrical and so is the movement around the left and
right pivot point.[3] The line CP includes an angle α
with the bottom of the rocker. The bottom includes
the time dependent angle ϕ with the horizontal table.
The equation of motion is

Jϕ̈+mgr cos(α+ ϕ) = 0 . (1)

With the substitution β = α + ϕ − π/2 we get Jβ̈ +
mgr sinβ = 0, the equation of motion for the physical
pendulum in the usual notation. The exact solution
is an elliptic integral.[4] The elliptic integral can be
approximated by a sine if β is small. β is not small
in our case, because α can be varied almost at will by
adding bricks to the rocker. For our purpose it is easier
to expand cos(α+ ϕ) in a Taylor series around ϕ = 0,
because ϕ is kept small in our experiment.[5] Up to
first order Eq. (1) becomes

ϕ̈+
mgr

J
(cos(α)− sin(α) · ϕ) = 0 . (2)

The solution of Eq. (2) is a hyperbolic cosine:

ϕ(t) = c− a cosh

(
t− t0
τ

)
(3)

c =
1

tanα
(4)

τ =

√
J

mgr sinα
. (5)

The parameters c and τ are device specific. The free
parameters a and t0 are determined by the starting
conditions, but the roots or zeros t1 and t2 of Eq. (3)
are better suited for data analysis:

t1,2 = t0 ± τ · arcosh(c/a) (6)

t0 =
t1 + t2

2
(7)

∆t = t2 − t1 (8)

a =
c

cosh
(

∆t
2τ

) (9)

ϕ(t, t1, t2) = c

(
1− cosh ((t− t0)/τ)

cosh (∆t/(2τ))

)
. (10)
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Figure 2: A LEGO-rocker oscillates for several seconds. The fit consists of 30 joined hyperbolic cosines,
see Eq. (10) and (13), with a total of 5 adjustable parameters. Their values are c = 0.3395 rad, τ =
0.7691 s, t1 = 2.663 s, t2 = 5.239 s, and δ = 0.8744.

The amplitude ϕ̂ of the ‘bumps’ (half cycles) decreases
due to damping and so does the half period ∆t. How
does ∆t depend on ϕ̂ ? For t = t0 we get from Eq. (10)

ϕ̂ = c

(
1− 1

cosh
(

∆t
2τ

)) . (11)

Solving Eq. (11) for ∆t gives

∆t = 2τ · arcosh

(
1

1− ϕ̂/c

)
. (12)

For very small amplitudes ∆t ∝
√
ϕ̂, i.e. the rocking

frequency rises approximately like the reciprocal square
root of the amplitude.

3 Experiment

The bottles and glasses mentioned in the introduction
are useful as quick demonstrations but difficult to ex-
periment with. Care has to be taken that they do not
slip or rotate around a vertical axis.[6] Because they
usually have rounded bottom edges, the pivot point
is not fixed. To avoid these difficulties, simple de-
vices have been built with LEGOTM bricks, see Fig. 1.
The advantage of the LEGO-rockers is that additional
bricks on the arms increase the moment of inertia and
subsequently the period of the oscillation. Bricks above

or below the arms rise or lower the center of mass.
Small or large (DUPLO) bricks have been used. Movies
have been taken with a digital photographic camera at
15 frames per second (fps), with a mobile phone at
30 fps or with a high speed camera at 50 fps. The type
of camera is not critical. The videos have been ana-
lyzed with Logger Pro.[7] The angles ϕ(t) have been
compared to theory with pro Fit.[8] The high speed
camera movies have been used for the figures in this
text.

4 Results

Some ten bumps are visible, see Fig. 2. If a hyperbolic
cosine as in Eq. (3) or (10) is fitted to one bump, see
Fig. 3, the residuals are of the same order of magnitude
as the measurement accuracy, about 2 mrad, and are
randomly distributed around zero. A sine or a parabola
fits distinctly worse, see the residuals in Fig. 4. If the
sine is offset, ϕ(t) = asin(ω(t− t0)) + b, to match the
number of parameters with the hyperbolic cosine, the
result is nearly identical to a parabolic fit. If the sup-
porting table is slightly inclined, the bumps for positive
and negative angles have different amplitudes. [2] This
was never a problem in our experiments.

Fig. 2 displays a damped oscillation, but Fig. 3 shows
symmetrical bumps. This means that energy is pre-
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Figure 3: A hyperbolic cosine is fitted to one bump
of the rocking motion (negative angles). The fitted
function, see Eq. (10), has 4 adjustable parameters.
The residuals are shown in Fig. 4. The symmetry of
fit and data shows that friction is negligible during
rotation.

dominantly lost when the rocker hits the table and not
during the rotation.[1, 2] By analogy with the coeffi-
cient of restitution of e.g. a bouncing ball, we would
expect the amplitude ϕ̂ to decrease by a constant fac-
tor δ from bump to bump, i.e. ϕ̂i+1 = ϕ̂i · δ. If we
know this factor, the trailing bumps are determined by
the leading one.

Several bumps are fitted at the same time by joining
functions of the type of Eq. (10) continuously at their
roots. The fitted function is

ϕ(t) = ϕ(t, t1, t2) · (t1 ≤ t ∧ t < t2)

+ ϕ(t, t2, t3) · (t2 ≤ t ∧ t < t3)

+ . . . , (13)

where the boolean expression (t1 ≤ t ∧ t < t2) is 1 if
true and 0 if false. Appropriate starting values for the
zeros t1, t2 and the global parameters c, τ have to be
supplied. ϕ̂ is calculated with Eq. (11) and multiplied
by δ to give the amplitude of the next bump. Then
Eq. (12) is used to calculate ∆t of this bump and its
zeroes t2 and t3 = t2 + ∆t, and so on. The fit in Fig. 2
was calculated in this way, i.e. the five parameters
c, τ, t1, t2, and δ are enough to fit all 30 bumps. The fit
must have one parameter more than a damped sinu-
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Figure 4: Residuals of the fit with a hyperbolic
cosine, see Fig. 3, a parabola and a sine. The cosh-
function clearly fits best. Measurement accuracy is
about 2 mrad.

soidal oscillation because the hyperbolic cosines need
to be vertically shifted. The parameters in Fig. 2 have
been optimized with pro Fit, but this can also be done
by trial and error. A value of c = 0.3395 (rad) trans-
lates to α ≈ 70◦, about compatible to Fig. 1.

5 Conclusion

For small amplitudes, the angular orientation ϕ(t) of a
rocker is a piecewise sum of hyperbolic cosines. The
rocking frequency rises as the amplitude decreases.
The experiment can be done with equipment that a
typical student has at home: a digital camera/mobile
phone and a computer.

I would like to thank S. Gamper and S. Byland for
discussions and proof reading.
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